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Abstract. We study the thermoelectric transport properties in the three-dimensional Anderson model of
localization near the metal-insulator transition (MIT). In particular, we investigate the dependence of the
thermoelectric power S, the thermal conductivity K, and the Lorenz number L0 on temperature T . We first
calculate the T dependence of the chemical potential µ from the number density n of electrons at the MIT
using an averaged density of states obtained by diagonalization. Without any additional approximation,
we determine from µ(T ) the behavior of S, K and L0 at low T as the MIT is approached. We find that σ
and K decrease to zero at the MIT as T → 0 and show that S does not diverge. Both S and L0 become
temperature independent at the MIT and depend only on the critical behavior of the conductivity.

PACS. 61.43.-j Disordered solids – 71.30.+h Metal-insulator transitions and other electronic transitions
– 72.15.Cz Electrical and thermal conduction in amorphous and liquid metals and alloys

1 Introduction

The Anderson-type metal-insulator transition (MIT) has
been the subject of investigation for decades since An-
derson formulated the problem in 1958 [1]. He proposed
that increasing the strength of a random potential in
a three-dimensional (3D) lattice may cause an “absence
of diffusion” for the electrons. Today, it is widely ac-
cepted that near this exclusively-disorder-induced MIT
the d. c. conductivity σ behaves as |E − Ec|ν , where Ec

is the critical energy or the mobility edge at which the
MIT occurs, and ν is a universal critical exponent [2].
Numerical studies based on the Anderson Hamiltonian
of localization have supported this scenario with much
evidence [2–6]. In measurements of σ near the MIT in
semiconductors and amorphous alloys this behavior was
also observed with varying values of ν ranging from 0.5–
1.3 [7–9]. It is currently believed that these different expo-
nents are caused by interactions in the system [10]. Indeed,
an MIT may be induced not only by disorder but also by
interactions such as electron-electron and electron-phonon
interactions, among others [11]. Nevertheless, the experi-
mental confirmation of the critical behavior of σ allows the
use of the Anderson model as an approximate description
of the transition between the insulating and the metallic
states in disordered systems.

Besides for the conductivity σ, experimental investiga-
tions can also be done for thermoelectric transport prop-
erties such as the thermoelectric power S [8,12,13], the
thermal conductivity K and the Lorenz number L0. The
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behavior of these quantities at low temperature T in dis-
ordered systems close to the MIT has so far not been sat-
isfactorily explained. In particular, some authors have ar-
gued that S diverges [12,14] or that it remains constant
[15,16] as the MIT is approached from the metallic side.
In addition, |S| at the MIT has been predicted [16] to
be of the order of ∼ 200µV/K. On the other hand, mea-
surements of S close to the MIT conducted on semicon-
ductors for T ≤ 1 K [13] and on amorphous alloys in the
range 5 K≤ T ≤ 350 K [8] yield values of the order of 0.1-
1µV/K. They also showed that S can either be negative
or positive depending on the donor concentration in semi-
conductors or the chemical composition of the alloy. The
large difference between the theoretical and experimental
values is still not resolved.

The objective of this paper is to study the behavior of
the thermoelectric transport properties for the Anderson
model of localization in disordered systems near the MIT
at low T . We clarify the above mentioned difference in the
theoretical calculations for S, by showing that the radius
of convergence for the Sommerfeld expansion used in ref-
erences [14,15] is zero at the MIT. We show that S is a
finite constant at the MIT as argued in references [15,16].
Besides for S, we also compute the T dependence for σ,
K, and L0. Our approach is neither restricted to a low- or
high-T expansion as in references [14,15], nor confined to
the critical regime as in reference [16].

We shall first introduce the model in Section 2. Then
in Sections 3 and 4 we review the thermoelectric trans-
port properties in the framework of linear response and
the present formulations in calculating them. In Sec-
tion 5 we shall show how to calculate the T dependence
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Fig. 1. The density of states of a 3D Anderson model, averaged
over many disorder realizations withW = 12. The solid vertical
lines at −Ec and Ec denote the mobility edges.

of these properties. Results of these calculations are then
presented in Section 6. Lastly, in Section 7 we discuss the
relevance of our study to the experiments.

2 The Anderson model of localization

The Anderson model [1] is described by the Hamiltonian

H =
∑
i

εi|i〉〈i|+
∑
i6=j

tij |i〉〈j| (1)

where εi is the potential energy at the site i of a regular cu-
bic lattice and is assumed to be randomly distributed in
the range [−W/2,W/2] throughout this work. The hop-
ping parameters tij are restricted to nearest neighbors.
For this system, at strong enough disorder and in the
absence of a magnetic field, the one-particle wavefunc-
tions become exponentially localized at T = 0 and σ van-
ishes [2]. Illustrating this, we refer to Figure 1 where we
show the density of states ρ(E) obtained by diagonalizing
the Hamiltonian (1) with the Lanczos method as in ref-
erences [17,18]. The states in the band tails with energy
|E| > Ec are localized within finite regions of space in the
system at T = 0 [2]. When the Fermi energy EF is within
these tails at T = 0 the system is insulating. Otherwise,
if |EF| < Ec the system is metallic. The critical behavior
of σ is given by

σ(E) =

{
σ0

∣∣∣1− E
Ec

∣∣∣ν , |E| ≤ Ec,

0, |E| > Ec,
(2)

where σ0 is a constant and ν is the conductivity expo-
nent [2]. Thus, Ec is called the mobility edge since it
separates localized from extended states. At the critical
disorder Wc = 16.5, the mobility edge occurs at Ec = 0,
all states with |E| > 0 are localized [3,4] and states with
E = 0 are multifractal [3,17]. The value of ν has been
computed from the non-linear sigma-model [19], transfer-
matrix methods [2,6], Green functions methods [2], and
energy-level statistics [5,20]. Here we have chosen ν = 1.3,
which is in agreement with experimental results in Si:P [9]
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Fig. 2. In an open circuit, a temperature gradient ∇T induces
an electric field E in the opposite direction which opposes the
thermal flow of electrons.

and the numerical data of reference [5]. More recent nu-
merical results [2,6], computed with higher accuracy, sug-
gest that ν = 1.5 ± 0.1. As we shall show later, this dif-
ference only slightly modifies our results. We emphasize
that the Hamiltonian (1) only incorporates the electronic
degrees of freedom of a disordered system and further ex-
citations such as lattice vibrations are not included.

For comparison with the experimental results, we mea-
sure σ in equation (2) in units of Ω−1cm−1. We fix the en-
ergy scale by setting tij = 1 eV. Hence the band width of
Figure 1 is comparable to the band width of amorphous al-
loys [21]. Furthermore, the experimental investigations of
the thermoelectric power S in amorphous alloys [8] have
been done at high electron filling [22] and thus we will
mostly concentrate on the MIT at Ec.

3 Linear thermoelectric effects

3.1 Definition of the transport properties

Thermoelectric effects in a system are due mainly to the
presence of a temperature gradient ∇T and an electric
field E [23]. We recall that in the absence of ∇T with
E 6= 0, the electric current density 〈j〉 flowing at a point
in a conductor is directly proportional to E,

〈j〉 = σE . (3)

By applying a finite gradient ∇T in an open circuit, elec-
trons, the thermal conductors, would flow towards the low-
T end as shown in Figure 2. This causes a build-up of
negative charges at the low-T end and a depletion of neg-
ative charges at the high-T end. Consequently, this sets
up an electric field E which opposes the thermal flow of
electrons. For small ∇T , it is given as

E = S∇T . (4)

This equation defines the thermopower S. In the Sommer-
feld free electron model of metals, S is found to be directly
proportional to −T [23]. Note that the negative sign is
brought about by the charge of the thermal conductors.

For small ∇T , the flow of heat in a system is propor-
tional to ∇T . Fourier’s law gives this as

〈jq〉 = K(−∇T ) (5)

where 〈jq〉 is the heat current density and K is the ther-
mal conductivity [23]. At low T , the phonon contribution
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to σ and K becomes negligible compared to the electronic
part [23]. As T → 0, σ approaches a constant and K be-
comes linear in T . One can then verify the empirical law
of Wiedemann and Franz which says that the ratio of K
and σ is directly proportional to T [24,25]. The propor-
tionality coefficient is known as the Lorenz number L0,

L0 =
e2

k2
B

K

σT
(6)

where e is the electron charge and kB is the Boltz-
mann constant. For metals, it takes the universal value
π2/3 [23,25]. Strictly speaking, the law of Wiedemann and
Franz is valid at very low T (. 10 K) and at high (room)
T . This is because in these regions the electrons are scat-
tered elastically. At T ∼ 10 − 100 K deviations from the
law are observed which imply that K/σT depends on T .

In summary, equations (3–6) express the phenomeno-
logical description of the transport properties.

3.2 The equations of linear response

A more compact and general way of looking at these ther-
moelectric “forces” and effects is as follows: the responses
of a system to E and ∇T up to linear order [26] are

〈j〉 = |e|−1
(
|e|L11E− L12T

−1∇T
)

(7)

and

〈jq〉 = |e|−2
(
|e|L21E− L22T

−1∇T
)
. (8)

The kinetic coefficients Lij are the keys to calculating the
transport properties theoretically. Using Ohm’s law (3) in
equation (7), we obtain

σ = L11 . (9)

Also from equation (7), S, measured under the condition
of zero electric current, is expressed as

S =
L12

|e|TL11
· (10)

With the same condition, equation (8) yields

K =
L22L11 − L21L12

|e|2TL11
· (11)

From equation (6) L0 is given as

L0 =
L22L11 − L21L12

(kBTL11)2
· (12)

Therefore, we will be able to determine the transport prop-
erties once we know the coefficients Lij . We note that in
the absence of a magnetic field, as considered in this work,
the Onsager relation L21 = L12 holds [26].

Eliminating the kinetic coefficients in equations (7, 8)
in favor of the transport properties, we obtain

〈j〉 = σE− σS∇T (13)

and

〈jq〉
T

= S〈j〉 − K∇T
T
· (14)

Here, 〈jq〉/T is simply the entropy current density [26].
Hence, the thermopower is just the entropy transported
per Coulomb by the flow of thermal conductors. Accord-
ing to the third law of thermodynamics, the entropy of a
system and, thus, also 〈jq〉/T will go to zero as T → 0.
We can check with equations (13, 14) that this is satisfied
by our calculations in the 3D Anderson model.

3.3 Application to the Anderson transition

In general, the linear response coefficients Lij are ob-
tained through the Chester-Thellung-Kubo-Greenwood
(CTKG) formulation [25,27]. The kinetic coefficients are
expressed as

L11 =
∫ ∞
−∞

A(E)
[
−∂f(E,µ, T )

∂E

]
dE , (15)

L12 = −
∫ ∞
−∞

A(E) [E − µ(T )]
[
−∂f(E,µ, T )

∂E

]
dE ,

(16)

and

L22 =
∫ ∞
−∞

A(E) [E − µ(T )]2
[
−∂f(E,µ, T )

∂E

]
dE , (17)

where A(E) contains all the system-dependent features,
µ(T ) is the chemical potential and

f(E,µ, T ) = 1/ {1 + exp([E − µ(T )]/kBT )} (18)

is the Fermi function. The CTKG approach inherently
assumes that the electrons are noninteracting and that
they are scattered elastically by static impurities or by lat-
tice vibrations. A nice feature of this formulation is that
all microscopic details of the system such as the depen-
dence on the strength of the disorder enter only in A(E).
This function A(E) can be calculated in the context of
the relaxation-time approximation [23]. However, an ex-
act evaluation of Lij is difficult, if not impossible, since it
relies on the exact knowledge of the energy and T depen-
dence of the relaxation time. In most instances, these are
not known.

In order to incorporate the Anderson model and the
MIT in the CTKG formulation, a different approach is
taken: We have seen in equation (9) that the d.c. con-
ductivity is just L11. Thus, to take into account the MIT
in this formulation, we identify A(E) with σ(E) given in
equation (2). The Lij in equations (15–17) can now be
easily evaluated close to the MIT without any approxi-
mation, once the T dependence of the chemical potential
µ is known. Unfortunately, this is not known for the ex-
perimental systems under consideration [7–9,12,13], nor
for the 3D Anderson model. Thus one has to resort to ap-
proximate estimations of µ, as we do next, or to numerical
calculations, as we shall do in the later sections.



182 The European Physical Journal B

4 Evaluation of the transport coefficients

4.1 Sommerfeld expansion in the metallic regime

Circumventing the computation of µ(T ), one can use that
−∂f/∂E is appreciable only in an energy range of the
order of kBT near µ ≈ EF. The lowest non-zero T cor-
rections for the Lij are then accessible by the Sommerfeld
expansion [23], provided that A(E) is non singular and
slowly varying in this region. Hence, in the limit T → 0,
the transport properties are [28]

σ = A(EF) +
π2

6
(kBT )2 d2A(E)

dE2

∣∣∣∣
E=EF

, (19)

S = − π2k2
BT

3|e|A(EF)
dA(E)

dE

∣∣∣∣
E=EF

, (20)

K =
π2k2

BT

3e2

{
A(EF)− π2(kBT )2

3A(EF)

[
dA(E)

dE

]2

E=EF

}
,

(21)

and consequently

L0 =
π2

3

{
1− π2(kBT )2

3[A(EF)]2

[
dA(E)

dE

]2

E=EF

}
. (22)

In the derivations of S, K, and L0, the term of order
T 2 in equation (19) has been ignored as is customary. We
remark that the terms of order T 2 in equations (21, 22) are
usually dropped, too. In this case in the metallic regime,
L0 reduces to the universal value π2/3 [23].

The above approach was adopted in references [14,15]
to study thermoelectric transport properties in the metal-
lic regime close to the MIT. From equation (20), the au-
thors deduce

S = − νπ2k2
BT

3|e|(EF −Ec)
· (23)

In the metallic regime, this linear T dependence of S
agrees with that of the Sommerfeld model of metals [23].
However, setting A(E) = σ(E) at the MIT [14] in equa-
tion (2) is in contradiction to the basic assumption of the
Sommerfeld expansion, since it is not smoothly varying
at EF = Ec. Thus identifying A(E) = σ(E) in equa-
tions (19–22) is only valid in the metallic regime with
kBT � |Ec −EF|.

4.2 Exact calculation at µ(T) = Ec

A different approach taken by Enderby and Barnes is to
fix µ = −Ec at finite T and later take the limit T → 0 [16].
Thus, again without knowing the explicit T dependence

of µ, the coefficients Lij can be evaluated at the MIT. For
the transport properties they obtain,

σ =
σoν(kBT )νIν
|Ec|ν

, (24)

S = −kB

|e|
ν + 1
ν

Iν+1

Iν
, (25)

K =
σo(kBT )ν+2

e2T |Ec|ν
[
(ν + 2)Iν+2 −

(ν + 1)2I2
ν+1

νIν

]
, (26)

and

L0 =
[

(ν + 2)Iν+2

νIν
− (ν + 1)2I2

ν+1

(νIν)2

]
. (27)

Here I1 = ln 2, Iν = (1 − 21−ν)Γ (ν)ζ(ν) for Re(ν) >
0, ν 6= 1, with Γ (ν) and ζ(ν) the usual gamma and Rie-
mann zeta functions. We see that at the MIT, S does not
diverge nor go to zero but remains an universal constant.
Its value depends only on the conductivity exponent ν.
This is in contrast to the result (23) of the Sommerfeld ex-
pansion. In addition, we find that σ ∝ T ν and K ∝ T ν+1

as T → 0. Hence, σ and K/T approach zero in the same
way. This signifies that the Wiedemann and Franz law is
also valid at the MIT recovering an earlier result in ref-
erence [29] obtained via diagrammatic methods. However,
at the MIT, L0 does not approach π2/3 but again depends
on ν. We emphasize that equations (24–27) are exact at
T values such that µ(T )−Ec = 0 [16]. Thus the T depen-
dence of σ, S, K, and L0 for a given electron density can
only be determined if one knows the corresponding µ(T ).

4.3 High-temperature expansion

In this section, we will study the lowest-order correc-
tions to the results obtained before with µ(T ) = Ec.
We do this by expanding the Fermi function (18) for
|Ec−µ(T )| � kBT . In addition, we assume µ(T ) ≈ EF for
the temperature range considered. This procedure gives

σ = L11 =
σoν(kBT )ν

|Ec|ν
[
Iν − (ν − 1)Iν−1

Ec −EF

kBT

]
. (28)

For the thermopower, the leading-order correction can be
obtained without expanding f(E,µ, T ) in L11 and L12.
This yields a constant for S at the MIT as predicted for
the first time in reference [15]. We obtain

S = −kB

|e|

[
ν + 1
ν

Iν+1

Iν
+
Ec −EF

kBT

]
. (29)

For K and L0, we again have to use the expansion of
f(E,µ, T ) as in (28) in order to get non-trivial terms.
The resulting expressions are cumbersome and we thus
refrain from showing them here. We remark that the basic
ingredients used in the high-T expansion are somewhat
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contradictory, namely, the expansion is valid for high T
such that |Ec − EF| � kBT , whereas µ(T ) = EF is true
only for T = 0.

At present, we thus have various methods of circum-
venting the explicit computation of µ(T ). However, their
ranges of validity are not overlapping and it is a priori not
clear whether the assumptions for µ(T ) are justified for S
or any of the other transport properties close to the MIT.
In order to clarify the situation, we numerically compute
µ(T ) in the next section and then use the CTKG for-
mulation to compute the thermal properties without any
approximation.

5 The numerical method

In equations (15–17), the explicit T dependence of the
coefficients Lij occurs in f(E,µ, T ) and µ(T ). More pre-
cisely, knowing µ(T ), it is straightforward to evaluate the
Lij . We recall that, for any set of noninteracting particles,
the number density of particles n can be determined as

n(µ, T ) =
∫ ∞
−∞

dEρ(E)f(E,µ, T ) , (30)

where ρ(E) is again the density of energy levels (in the
unit volume) as in Figure 1. Vice versa, if we know n and
ρ(E) we can solve equation (30) for µ(T ). The density of
states ρ(E) for the 3D Anderson model has been obtained
for different disorder strengths W as outlined in Section 2.
We determine ρ(E) with an energy resolution of at least
0.1 meV (∼ 1 K). Using ρ(E), we first numerically cal-
culate n at T = 0 for the metallic, critical and insulating
regimes using the respective Fermi energies |EF| < Ec,
EF = Ec, and |EF| > Ec. With µ = EF, we have

n(EF) =
∫ EF

−∞
dEρ(E) . (31)

Next, keeping n fixed at n(EF), we numerically determine
µ(T ) for small T > 0 such that |n(EF)− n(µ, T )| is zero.
Then we increase T and record the respective changes in
µ(T ). Using this result in equations (15–17) in the CTKG
formulation, we compute Lij by numerical integration and
subsequently determine the T -dependent transport prop-
erties (9)–(12).

We consider the disorders W = 8, 12, and 14 where
we do not have large fluctuations in the density of states.
These values are not too close to the critical disorder Wc,
so that we could clearly observe the MIT of equation (2).
The respective values of Ec have been calculated previ-
ously [3] to be close to 7.0, 7.5, and 8.0. Within our ap-
proach, we choose Ec to be equal to these values.

6 Results and discussions

Here we show the results obtained for W = 12 with Ec =
7.5. The results for σ, K, and L0 are the same at −Ec and
Ec since they are functions of L11, L22 and L2

12, only. On
the other hand, this is not true for S.
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Fig. 3. The temperature dependence of the chemical potential
µ measured with respect to the Fermi energy near both mobil-
ity edges. Also shown is µ(T ) for a free electron gas. The solid
line denotes µ(T ) of equation (33).

6.1 The chemical potential

In Figure 3, we show how µ(T ) behaves for the 3D Ander-
son model at EF−Ec = 0, and ±0.01. To compare results
from different energy regions we plot the difference of µ(T )
fromEF. We find that µ(T ) behaves similarly in the metal-
lic and insulating regions and at the MIT for both mobility
edges at low T . In all cases we observe µ(T ) ∝ T 2. Fur-
thermore, we see that µ(T ) at −Ec equals −µ(T ) at Ec.
This symmetric behavior with respect to EF = µ reflects
the symmetry of the density of states at E = 0 as shown
in Figure 1.

For comparison and as a check to our numerics, we
also compute with our method µ(T ) of a free electron gas.
The density of states is [23]

ρ(E) =
3
2
n

EF

(
E

EF

)1/2

(32)

and we again use EF = Ec = 7.5. We remark that this
value of the mobility edge is in a region where ρ(E) in-
creases with E in an analogous way as ρ(E) for the An-
derson model at −Ec. Thus, as shown in Figure 3, µ(T )
of a free electron gas is concave upwards as in the case
of the Anderson model at −Ec. We also plot the result
for µ(T ) obtained by the usual Sommerfeld expansion for
equation (30),

EF − µ(T ) =
EF

3

(
πkBT

2EF

)2

· (33)

We see that our numerical approach is in perfect agree-
ment with the free electron result.
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6.2 The d.c. conductivity

In Figure 4 we show the T dependence of σ. The values of
EF we consider and the corresponding fillings n are given
in Table 1.

The conductivity at T = 0 remains finite in the
metallic regime with σ/σo = |1−EF/Ec|ν , because
(−∂f/∂E)→ δ(E −EF) in equation (15) as T → 0. Cor-
respondingly, we find σ = 0 in the insulating regime at
T = 0. In the critical regime, σ(T → 0) ∼ T ν, as derived
in reference [16], see equation (24). We note that as one
moves away from the critical regime towards the metal-
lic regime one finds within the accuracy of our data that
σ ∼ T 2. We observe that in the metallic regime σ increases
for increasing T . This is different from the behavior in a
real metal where σ decreases with increasing T . However,
as explained in Section 2, the behavior of σ in Figure 4 is
due to the absence of phonons in the present model.

We also show in Figure 4 results of the Sommerfeld ex-
pansion (19) and the high-T expansion (28) for σ. Paradig-
matic for what is to follow we see that the radius of conver-
gence of the Sommerfeld expansion decreases for EF → Ec

and in fact is zero in the critical regime. On the other
hand, the high-T expansion is very good in the critical
regime down to T = 0 at Ec = EF. The small systematic
differences between our numerical results and the high-T
expansion for large T are due to the differences in µ(T )
and EF. The expansion becomes worse both in the metal-
lic and insulating regimes for larger T . All of this is in
complete agreement with the discussion of the expansions
in Section 4.

6.3 The thermopower

In Figure 5, we show the behavior of the thermopower
at low T near the MIT. In the metallic regime, we find
S → 0 as T → 0. At very low T , S ∝ T as predicted by
the Sommerfeld expansion (23). We see that the Sommer-
feld expansion is valid for not too large values of T . But
upon approaching the critical regime, the expansion be-
comes unreliable similar to the case of the d.c. conductiv-

Table 1. Differences of EF and n(EF) with respect to the
mobility edge at Ec = 7.5. The density at Ec corresponds to
n = 97.768%.

regime EF − Ec n(EF)− n(Ec) symbol
(eV) (%)

metallic −0.010 −0.031 ◦
−0.007 −0.022 5
−0.005 −0.015 �

−0.003 −0.009 4
−0.001 −0.003 3

critical 0.000 0.000 •
insulating 0.001 0.003 +

0.003 0.009 ×
0.010 0.031 ∗
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Fig. 4. The low temperature behavior of the d.c. conductivity
σ. The symbols are as shown in Table 1. The dashed lines
represent the Sommerfeld expansion result for σ(T ) as given
in equation (19). For all 8 choices of EF−Ec, the corresponding
high-T expansion (28) is indicated by solid lines.

ity of Section 6.2. This behavior persists even if we include
higher order terms in the derivation of S such as theO(T 2)
term of equation (19) as shown in Figure 5. At constant
T , we find that S increases as EF approaches Ec. This is
consistent with the increasing asymmetry in the functional
form of σ(E) as in equation (2). Namely, the conductivity
of electrons with energies Ee > µ(T ) is smaller than the
conductivity of holes with energies Eh < µ(T ). It is this
electron-hole asymmetry which leads to a finite L12 and
thus a non-zero value of S at finite T . We note that a
constant σ(E) would simply give S = 0.

Before discussing the critical regime in detail, let us
turn our attention to the insulating regime. Here, S be-
comes very large as T → 0. We have observed that it
even appears to approach infinity. A seemingly divergent
behavior in the insulating regime has also been observed
for Si:P [30], where it has been attributed to the thermal
activation of charge carriers from EF to the mobility edge
Ec. However, there is a simpler way of looking at this phe-
nomenon. We refer again to the open circuit in Figure 2.
Suppose we adjust T at the cooler end such that ∇T re-
mains constant. As T → 0 both σ and K vanish in the case
of insulators — for K we show this in the next section.
This implies that as T decreases it becomes increasingly
difficult to move a charge from T to T + δT . We would
need to exert a larger amount of force, and hence, a larger
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Fig. 5. The low temperature behavior of the thermopower
S. The symbols are as shown in Table 1. The dashed lines
represent the behavior of S(T ) in the metallic regime as given
in equation (23). The dot-dashed lines indicate S, calculated
with the O(T 2) term of equation (19), for EF−Ec = −0.01 eV
(◦) and −0.001 eV (�). Solid lines are obtained from the high-T
expansion (29). The inset shows the behavior at EF = Ec on
an enlarged scale.

E to do the job. From equation (4), this implies a larger
S value.

In the critical regime, i.e., setting EF = Ec, we observe
in Figure 5 that for T → 0 the thermopower S approaches
a value of 228.4µV/K. This is exactly the magnitude pre-
dicted [16] by equation (25) for ν = 1.3. In the inset of Fig-
ure 5, we show that the T dependence of S is linear. The
nondivergent behavior of S clearly separates the metallic
from the insulating regime. Furthermore, just as for σ, the
Sommerfeld expansion for S breaks down at EF = Ec, i.e.,
the radius of convergence is zero. Thus, the divergence of
equation (23) at EF = Ec reflects this breakdown and is
not physically relevant. On the other hand, the high-T ex-
pansion [15] nicely reflects the behavior of S close to the
critical regime as also shown in Figure 5. For EF = Ec,
the high-T expansion (29) assumes a constant value of S
for all T due to setting µ(T ) = EF. This is approximately
valid, the differences are fairly small as shown in the inset
of Figure 5.

We stress that there is no contradiction that S > 0
in our calculations whereas S < 0 in reference [16]. In
Figure 6, we compare S in energy regions close to Ec and
to −Ec [31]. Clearly, they have the same magnitude but

0 20 40 60 80 100
T (K)

−200

−100

0

100

200

S
 (

µV
/K

)

Fig. 6. An example that the magnitude of S(T ) is the same in
metallic regions close to −Ec (�) and Ec (◦). The +-symbols
indicate |S| for −Ec and |EF − Ec| = 0.01 eV in all cases.

S < 0 at −Ec and S > 0 at Ec. The two cases mainly
differ in their number density n. At −Ec the system is
at low filling with n = 2.26% while at Ec the system is
at high filling with n = 97.74%. In agreement with the
discussion in the beginning of this section, the sign of S
implies that at low filling the thermoelectric conduction
is due to electrons and we obtain the usual picture as
in Figure 2 where the induced field E is in the direction
opposite to that of ∇T . At high filling, S > 0 means that
E is directed parallel to ∇T . This can be interpreted as
a change in charge transport from electrons to holes. We
remark that this sign reversal also occurs in the insulating
as well as in the critical regime.

In Figure 7, we take the data of Figure 5 and plot
them as a function of µ − Ec. Our data coincides with
the isothermal lines which were calculated according to
reference [16] by numerically integrating L12 and L11 for
a particular T to get S. We observe that all isotherms
of the insulating (µ > Ec) and the metallic (µ < Ec)
regimes cross at µ = Ec and S = 228.4µV/K. Comparing
with equation (23), we again find that the Sommerfeld
expansion does not give the correct behavior of S in the
critical regime.

The data presented in Figure 7 suggest that one can
scale them onto a single scaling curve. In Figure 8, we
show that this is indeed true, when plotting S as a func-
tion of (µ − Ec)/kBT . We emphasize that the scaling is
very good and the small width of the scaling curve is only
due to the size of the symbols. The result for the high-T
expansion is indicated in Figure 8 by a solid line. It is good
close to the MIT. In the metallic regime, the Sommerfeld
expansion correctly captures the decrease of S for large
negative values of (µ − Ec)/kBT . We remark that a scal-
ing with (EF −Ec)/kBT as predicted for the first time in
reference [15] is approximately valid. The differences are
very small as shown in the inset of Figure 8.
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Fig. 7. The data of S in Figure 5 shown as a function of
µ measured from Ec = 7.5 eV. The horizontal line indicates
the fixed point MIT value as given in equation (25). The thin
dashed lines represent isotherms of S calculated using the same
method as in reference [16]. The solid line is an isotherm of S
obtained from equation (23) for T = 22.3 K.
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Fig. 8. Scaling plot of the thermopower S. The thick dashed
line indicates the fixed point value at the MIT, the solid line
represents the high-T expansion (29), and the thin dashed line
shows the Sommerfeld expansion. The inset shows the differ-
ence in the scaling when plotting S for EF − Ec = −0.001 eV
as function of (µ−Ec)/kBT (open symbols) or (EF−Ec)/kBT
(filled symbols).

6.4 The thermal conductivity and the Lorenz number

In Figure 9, we show the T dependence of the thermal
conductivity K. We see that K → 0 as T → 0 whether
it be in the metallic or insulating regime. We note again
that this simple behavior is due to the fact that our model
does not incorporate phonon contributions. The T depen-
dence of K varies whether one is in the metallic regime or
in the insulating regime and how far one is from the MIT.
Directly at the MIT, we find that K → 0 as T ν+1 con-
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Fig. 9. The thermal conductivity K as a function of temper-
ature. The symbols are as shown in Table 1. The dashed lines
were obtained in O(T ) from the Sommerfeld expansion (21)
for the metallic regime. The results of the high-T expansion
for the 8 choices of EF − Ec are indicated by solid lines.

firming the T dependence of K as given in equation (26).
Near the localization MIT, the T dependence of K/T is
thus the same as for σ in agreement with reference [29].
Again, we see that the Sommerfeld expansion (21) is rea-
sonable only at low T in the metallic regime. As for σ and
S, we see that the high-T expansion is again fairly good
in the vicinity of the critical regime.

At this point we are able to determine the behavior
of the entropy in the system as T → 0. In the metallic
regime, S and K vanish as T → 0, while in the critical
and insulating regime, σ andK vanish as T → 0. Applying
these results to equations (13,14) yields that for all regimes
the entropy current density 〈jq〉/T vanishes as T → 0.
Therefore, we find that the third law of thermodynamics
is satisfied for our numerical results of the 3D Anderson
model.

Next, we present the Lorenz number (6) as a function
of T in Figure 10. In the metallic regime, we obtain the
universal value π2/3 as T → 0. Note that for a metal
this value should hold up to room T [23]. However, our
results for the Anderson model show a nontrivial T de-
pendence. One might have hoped that the higher-order
terms in equation (22) could adequately reflect the T de-
pendence of our L0 data. However, this is not the case as
shown in Figure 10. This indicates that even if we incorpo-
rate higher order T corrections the Sommerfeld expansion
will not give the right behavior of L0 near the MIT. We
emphasize that the radius of convergence of equation (22)
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Fig. 10. The Lorenz number L0 as function of temperature.
The symbols are as shown in Table 1. The dashed circles mark
the values of L0 at T = 0 for metallic and insulating regimes.
The dashed lines were obtained from equation (22). The re-
sults of the high-T expansion for EF − Ec = 0 eV, ±0.001 eV
and 0.003 eV are indicated by solid lines. The inset shows the
behavior at EF = Ec on an enlarged scale.

is even smaller than for σ, S and K. Similarly, the high-T
expansion is also much worse than previously for σ, S and
K. Thus in addition to the results for the critical regime,
we only show in Figure 10 the results for nearby data sets
in the insulating and metallic regimes. The T dependence
of L0 is linear as shown in the inset of Figure 10. As be-
fore for S, the high-T expansion does not reproduce this.
At the MIT, L0 = 2.4142. This is again the predicted [16]
ν-dependent value as given in equation (27).

In the insulating regime, one can show analytically by
taking the appropriate limits that L0 approaches ν + 1 as
T → 0. In agreement with this, we find that L0 = 2.3 at
T = 0 in Figure 10. At first glance, it may appear sur-
prising that a transport property in the insulating regime
could be determined by a universal constant of the critical
regime such as ν. However, in the evaluation of the coeffi-
cients Lij , the derivative of the Fermi function for any
finite T decays exponentially and thus one will always
have a non-zero overlap with the critical regime. In the
evaluation of equation (12), this ν dependence survives in
the limit T → 0. In real materials, we expect the relevant
high-energy transfer processes to be dominated by other
scattering events and thus L0 should be different. Never-
theless, for the present model, this ν dependence holds.

6.5 Possible scenarios in the critical regime

The results presented in Section 6.3 for the thermopower
at the MIT show that S = 228.4µV/K for ν = 1.3. This
value is 2 orders of magnitude larger than those measured
near the MIT [8,12,13]. However, as mentioned in the in-
troduction, the conductivity exponents found in many ex-
periments are either close to ν = 0.5 or to 1 [7] and one
might hope that this difference may explain the small ex-
perimental value of S. Also, recent numerical studies of
the MIT by transfer-matrix methods together with non-
linear finite-size scaling find ν = 1.57±0.03 [6]. In Table 2
we summarize the values of S and L0 at the MIT for these
conductivity exponents. We see that all S values still differ
by 2 orders of magnitude from the experimental results.
Furthermore, we note that our results for S and L0 are in-
dependent of the unit of energy. Even if, instead of 1 eV,
we had used tij = 1 meV, which is appropriate in the
doped semiconductors [7,9,13,30], we would still obtain
the values as in Table 2. Thus our numerical results for
the thermopower of the Anderson model at the MIT show
a large discrepancy from experimental results. This may
be due to our assumption of the validity of equation (2) for
a large range of energies, or due to the absence of a true
Anderson-type MIT in real materials, or due to problems
in the experiments.

A different scenario for a disorder driven MIT has been
proposed by Mott, who argued that the MIT from the
metallic state to the insulating state is discontinuous [32].
Results supporting such a behavior have been found ex-
perimentally [11,33]. According to this scenario, σ drops
from a finite value σmin to zero [32] for T = 0 at the MIT.
This minimum metallic conductivity σmin was estimated
by Mott to be

σmin '
1
a

e2

~
(34)

where a is some microscopic length of the system such as
the inverse of the Fermi wave number, a ≈ k−1

F . As sum-
marized in reference [11], experiments in non-crystalline
materials seem to indicate that σmin > 300 Ω−1cm−1. Let
us assume the behavior of σ(E) close to the MIT to be

σ(E) =
{
σmin, |E| ≤ Ec,

0, |E| > Ec,
(35)

Table 2. The thermopower and the Lorenz number at the
MIT for a 3D Anderson model evaluated for various ν at Ec =
7.5 eV. The values for ν = 0.5 and 1 have already been shown
in reference [16].

ν S L0

(µV/K)

0.5 163.5 1.7761
1.0 204.5 2.1721
1.3 228.4 2.4142
1.57 249.7 2.6372
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with σmin = 300 Ω−1cm−1. Using the numerical approach
of Section 5, we obtain S = 119.5 µV/K at the MIT.
This value is still rather large and thus the assumption
of a minimum metallic conductivity as in equation (35)
cannot explain the discrepancy from the experimental re-
sults. We remark that the order of magnitude of S is not
changed appreciably, even if we add to the metallic side
of equation (35) a term as given in equation (2) with σ0 a
few hundred Ω−1cm−1 and ν = 1.

Lastly, we note that the transport properties calcu-
lated for W = 8 and 14 do not differ from those obtained
for W = 12 in both the metallic and insulating regions
provided we are at temperatures T . 100 K. For S and
L0 at the MIT we obtain the same values as for W = 12.
Again we observe that both S and L0 approach these val-
ues linearly with T , but with different slopes. Our results
show that the higher the disorder strength the smaller the
magnitude of the slope.

7 Conclusions

In this paper, we investigated the thermoelectric effects
in the 3D Anderson model near the MIT. The T depen-
dence of the transport properties is determined by µ(T ).
We were able to compute µ(T ) by numerically invert-
ing the formula for the number density n(µ, T ) of non-
interacting particles. Using the result for µ(T ), we calcu-
lated the thermoelectric transport properties within the
Chester-Thellung-Kubo-Greenwood formulation of linear
response. As T → 0 in the metallic regime we verified that
σ remains finite, S → 0, K → 0 and L0 → π2/3. On the
other hand, in the insulating regime, S →∞. This we at-
tribute to both σ and K going to zero. Thus, it becomes
increasingly difficult to achieve equilibrium and, hence,
the system requires E → ∞. For L0, we obtained a uni-
versal value of ν+1 even in the insulating regime. Directly
at the MIT, the thermoelectric transport properties agree
with those obtained in reference [16]. Namely, as T → 0,
we found σ ∼ T ν , K ∼ T ν+1, while L0 → const.

The thermopower S also remains nearly constant in
the critical regime and, in particular, it does not diverge
at the MIT in contrast to earlier calculations using the
Sommerfeld expansion at low T [14]. Here we showed that
the difference is not so much due to an order of limits prob-
lem, but rather reflects the breakdown of convergence of
the Sommerfeld expansion at the MIT [15]. Our result is
supported by scaling data for S at different values of T and
EF onto a single curve which is continuous across the tran-
sition. Scaling curves for σ, K and L0 can be constructed
in a similar way; results will be published elsewhere [34].
We remark that some of the experiments for S [8,12] have
been influenced by the Sommerfeld expansion such that
the authors plot their results as S/T . In such a plot the
signature of the MIT is hard to identify, since S/T at the
MIT diverges as T → 0 solely due to the decrease in T .
Our results suggest that plots as in Figures 5 and 7 should
show the MIT more clearly.

The value of S is at least two orders of magnitude
larger than observed in experiments [8,12,13]. This large

discrepancy may be due to the ingredients of our study,
namely, we assumed that a simple power-law behavior of
the conductivity σ(E) as in equation (2) was valid even for
E � Ec and E � Ec. Furthermore, we assumed that it
is enough to consider an averaged density of states ρ(E).
While the first assumption is of course crucial, the sec-
ond assumption is of less importance as we have checked:
Local fluctuations in ρ(E) will lead to fluctuations in the
thermoelectric properties for finite T , but do not lead to a
different T → 0 behavior: S remains finite with values as
given in Table 2. Moreover, averaging over many samples
yields a suppression of these fluctuations and a recovery
of the previous behavior for finite T . In this context, we
remark that — naively assuming all other parts of the
derivation are unchanged — implications of many-particle
interactions such as a reduced single-particle density of
states at EF [35], will only modify the T dependence of
µ. Consequently, the T dependencies of S, σ, K, and L0

may be different, but their values at the MIT remain the
same.

Our results also suggest that the critical regime is very
small. Namely, as the filling increases slightly from n =
97.74% to 97.80%, the behavior of the system changes
from metallic to critical and finally to insulating. Up to the
best of our knowledge, such small changes in the electron
concentration have not been used in the measurements of
S as in references [8,12,13]. We emphasize that such a
fine tuning of n is not essential for measurements of σ as
is apparent from Figure 4.

Of course, one may also speculate [16] that these re-
sults suggest that a true Anderson-type MIT has not yet
been observed in the experiments.
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Löhneysen, Phys. Rev. Lett. 71, 2634 (1993).

10. D. Belitz, T.R. Kirkpatrick, Rev. Mod. Phys. 66, 261
(1994).

11. N.F. Mott, E.A. Davis, Electronic Processes in Non-
crystalline Materials (Clarendon Press, Oxford, 1979).

12. G. Sherwood, M.A. Howson, G.J. Morgan, J. Phys.-Cond.
Matter 3, 9395 (1991).
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